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Equation of state of a strongly magnetized hydrogen plasma

M. Steinberg, J. Ortner, and W. Ebeling
Institut fur Physik, Humboldt Universitazu Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany
(Received 10 April 1998

The influence of a constant uniform magnetic field on the thermodynamic properties of a partially ionized
hydrogen plasma is studied. Using the Green’s-function method, various interaction contributions to the ther-
modynamic functions are calculated. The equation of state of a quantum magnetized plasma is presented within
the framework of a low-density expansion up to the ordém?> and, additionally, including ladder-type
contributions via the bound states in the case of strong magnetic fields{2B5T<B=<2.35x10° T). We
show that for high densitiesn&107"3° m~3) and temperature3~10°—10° K typical for the surface of
neutron stars, nonideality effects such as, e.g., Debye screening must be taken into account.
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[. INTRODUCTION bound and scattering states on thermodynamic properties of
magnetized plasmas.
The calculation of the equation of staieOS of a mul- Recently the problem of ionization equilibrium of hydro-

ticomponent quantum plasma consisting of charged particled€n atoms in superstrong magnetic fields~(1) was con-
interacting via the Coloumb potential is of theoretical inter-Sidered by Lai and Salpetg8]. They proposed an ideal Saha

est as well as of practical relevance, e.g., for astrophysicdiduation of a hydrogen gas including bound states but ne-
systems such as stars. The aim of this paper is to derive lecting screening effects and scattering contributions to the

low-densi ion for the EOS of cond virial coefficient. Using the EOS obtained in our deri-
ow-density expansion for the of a two-component, 4o we construct a modified Saha equation that takes into

plasma embedded in an external constant magnetic fielgccount nonideality effects as well.

This problem was recently tackled by Corfili and Boose The paper is organized as follows. In Sec. Il, we discuss
and Perez2], who derived a formally exact virial expansion the method that is used to calculate thermodynamic functions
of the EOS by using a formalism that is based on theand derive analytical results for the scattering contribution in
Feynman-Kac path-integral representation of the grandSec. lll. An approximate result for the bound state contribu-
canonical potential. tions is _given in Sec_. IV and the equation of state is. pre-
method. As the calculations are carried out for a nonrelativ9eneralized Saha equation and compare the degree of ioniza-
istic quantum system, we restrict ourselves to magnetic-fielgiIOn with the results of the ideal Saha equation in Sec. V1.
strengthsB<Bye;, which is given byB=mzc?/(efi)~4.4 || FUGACITY EXPANSIONS OF THE THERMODYNAMIC

X 10° T. Further, we will use an expansion of the magne- FUNCTIONS

tized plasma pressure in terms of the fugadtyef* to
obtain the EOS of a weakly coupled magnetized plasmat.e

Thus we can derive explicit expressions for various contrl-N spin half particles of chargeand massn; . In general, the

butlon_s to t_he guantum s_econd virial coefﬂuen_t. Though theyy pressure can be split into ideal contributions and inter-
formalism is formally valid only for low densities, the ob- 5.tion contributions

tained explicit expressions are appropriate even at sufficient
high densities as the magnetic field increases the domain of P=Pigt Pint- (1)

classical behavior towards higher densities. The second viria1Lhe pressure and the particle density of an ideal plasma in a

tions o_f two-part_icle states. Being intere_zsted in the therm(_)l!;? I;]:rgr:ini?l?:;gl]sa %r\]gtrlca“ﬁ:n(d%l?l?eo\)/;ée given by a sum
dynamic properties of quantum magnetized plasmas, the in-
fluence of the magnetic field on the energy eigenstates of a 2x
two-particle state has to be taken into account. Pia=kTY — 2" f1(ln(2),

Usually the magnetic field is measured by the dimension- a Ay n=0
less parametey=%w./2R=B/By, wher(c}‘i’uuc is the elec- oy
tron cyclotron energy, By=2.35<10° T, and R _\ ffa ' a
=e?/(8megag)~13.605 eV is the ionization energy of the n=2 A3 Z f-1a(in(zy)) 2
field-free hydrogen atom. Whenevgr-1, i.e., the cyclotron
energy is larger than the typical Coulomb energy, the structXa=%®3/(2kT) with wi=|e,|Bg/m,, A=h/{27mKT,
ture of the hydrogen atom is dramatically changed. Thisand z&=exd S(u—nfiwd)]). The prime indicates the double
problem has been approached by several auff®#6]. Us- summation due to the spin degeneracy except fomta®
ing the results of these authors, we study the influence devel.

We consider a two-component charge-symmetrical sys-
m ofN spin half particles of charge<{e) and massn, and
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The interaction part of the pressure for sufficiently strongtechnique is well established in the zero magnetic-field case
decaying potentials may be written in terms of a fugacity[7—9] and can be easily extended to the nonzero magnetic-
expansion field case. This program was also carried out by Cdrhu

and Boose and Perd2], who used the Feynman-Kac for-

33 333 lism to derive a virial expansion for a magnetized multi-
—Pid) = 2 ZaZpBapt 20 ZaZpZBapet -, (3 ma . . .
AP~ Pia) % ath=ab %c a%bfcBabe & component system. Using the methods as describgeH],
_ - N the convergent second virial coefficient of a plasma may be
where we have introduced the modified fugacities split into a scattering and bound state contribution. In con-
trast to the zero magnetic-field case, an exact calculation of
~ 2 Xa the convergent second virial coefficient in terms of scattering
Za=Zy— : (4) el s : o
Ag tanh(x,) phase shifts is very complicated. Therefore, we will give a

perturbation expansion of the scattering part in terms of the

In the limit of small densities we hawg—n,. We focus on intergction paramgteez up to the order* and use an ap-
the calculation of the second virial coefficieBy,,, which is proximate expression for the bound state part, which is valid

defined by in the case of strong magnetic fieldy>100). We may
employ the Green’s-function method. The starting point is
1 (A2 tanhx,)\ [ A tanh(x,) the observation that the equation of state is connected to the
BabZE > Xq > Xo average interaction enerd%V,,) by a charging process
_anh=1 _ A A=0 1 (id\
XTr(e PMav —e ™ FMav ), (5 P—Pia=— ﬁfoT<Vab>>\, )

ﬂ;b is the Hamilton operator of the two-particle system with

the interaction potentiaV,(r), Q is the volume of the system. Taking into account many-

body effects, thermodynamic functions may be expressed by

5 a screened potentidls, . By this method the divergencies

O = ( (Pa—€aAa) + 4%B ) due to the long-range Coulomb force are removed. Then the
ab MBbo0;

2my pressure is given by the equation
(Po—€AL* 1 1dn
+ 2—mb+/1’88002 +AVap(r), ﬁ(p—pid)=m§; foT,f dild2
o=~ L+l ©) X[Vap(120)G4(11)G(22)

and HAC of the noninteracting system. The additive term
uaBgo, describes the coupling between the intrinsic mag-
netic momenf ug = e,%/(2m,)] of the charged particles and Here the first term is the Hartree approximation given in
the magnetic field. However, in the case of particlesterms of the free-particle Green’s functi@y(11) andII,,
interacting via the Coulomb potentiaV,,(r)=e,ep/ denotes the polarization function. For low-density systems it
(4meg|ra—ry|) the second virial coefficient defined by Egs. is necessary to calculate bound state contributions to the
(4) and (6) is divergent. In order to obtain a convergent ex-thermodynamic functions. Therefore we apply the ladder ap-
pression, one has to perform a screening procedure. Suchpaoximation forlIl

FVS,(120) (12157 270) ] (8)

L[ D =)
ﬁ(p“Pid):é‘de:/;_/\_ ....... +2Q%:P3/0 v

(€)



3808 M. STEINBERG, J. ORTNER, AND W. EBELING PRE 58

To avoid double counting we have introduced the operator bound_7 3 p_pghbound 11
. . . Pint ZeZiF3bap ( )
P3, which subtracts contributions of the ordst, and

(Vip)?. We may dividep;, into a bound state contribution where at zero magnetic fielB22""%is given by the Planck-
bound catt

P and a scattering state contributipg™, Larkin partition function[10]. This division is somewhat ar-
bound . scatt bitrary but guarantees the convergence of the bound state
Pint=Pint T Pint - (10 partition function even at vanishing magnetic field. We men-

tion that this division does not affect the results of the ther-

In the case of a Coloumb potential, this division is not trivial modynamic potentials.

as the atomic partition function is divergent due to the infi-
nite number of bound states at the continuum boundary. This
problem has been extensively discussed in the zero
magnetic-field cas¢9]. One can solve this problem in a  We consider all diagrams up to the ordgrin the inter-
natural way by introducing a renormalized sum of boundaction parameter. A diagrammatic representation of the per-
states, turbation expansion takes the form

Ill. SCATTERING STATE CONTRIBUTION

X
+
Bpisst = 5o Xb: fo 1 2 m - (12
+
00

These diagrams are the Hartree term, the Montroll-Ward
term, the Hartree-Fock term, and the exchasfj¢éerm, re-
spectively. The solid lines represent the uncorrelated Green’s
function for a charged particle in a magnetic fidltil]. =8(R)&(T). (13
Hence our calculations are valid at arbitrary magnetic-field

strength. The divergence of the Montroll-Ward graph iSg/(y v/ Ty can be expressed in terms of the correlation func-
avoided by introducing a screened potential line. Thejgng by

screened interaction potentiaV® is evaluated in the
random phase approximation V3(q,0)=V(q)/[1
—V(q)IIRPAq,w)]. At low densitiesV® can be approxi-
mated by a statically screened potentdf=e?/(eq[q?
+«2])) with 2= (e €,)TIRPA0,0)= B(e?/€o)(zo+2;). In  The prime denotes the particular choice of the gauge. Both
the following calculations all results are obtained by setting®> and GZ satisfy the homogeneous counterpart of Eq.
the distribution functionfo(w)=ef#*e~#*, i.e., in the non- (13). Accordmg. to Horing[11], for arbitrarily chosen gauge
degenerate limio\ 3tanh)/x<1. The Hartree term vanishes 1€y can be written as

due to the electroneutrality.

AR mw(z:
8

2, y2y . Yer AP
X+ Y+ L~ ugBo i —= | G'(R,T)

G'(rr', T)=0MGL(ryr" T+ 6(-T)GL(r,r',T).

. (do[—i[l-fy)]
Crarr 'T)‘f%[ ifo(o) }

A. Green'’s function for the magnetic-field problem . *
) ) Xexp—iwT) dT’
In this section we represent the uncorrelated Green’'s —o
function for a charged particle moving in a constant mag-
netic field in a closed form. The Green’s function is the
solution of the equation of motiofusing symmetric gauge

and settingh =1): with

XexpiwT )A(r,r',T"), (14
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3exp(ip‘R)

A(r,r',T’)zC(r,r’)f dp)
ar

(2
Pz

xXexp _i(MBBO'Z'F%

. (15

[ 2+ 2 ®
xXexpg —i p:n IOytar(—CT’)

We 2
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wheref,(X,,Xp) Mmay be written as
1 41
fo(Xa:Xp)=| 35+ —f dtyt(1-t)

2 mJo

(Yt )arctanh/l —(YatVYp) (21)

YaTVYp )
¢ V1= (Ya+yo)

with

—_\2 H H 2
The gauge dependence of the Green's function is explicitly ~ Yab=MaabbSINN(Xa pt)SINN(Xa p(1 = 1))/[A 55t (1—1)

given in the factorC(r,r’). Noting thatC(r,r') is only a
and that it obeys the relation
C(r,r")C(r’,r)=1, this factor can be left aside in the fol-

function of R=r—r’

lowing calculations.

B. Hartree-Fock (HF) term

X 2%4 pSINA(X, p) ]

The first term in Eq(20) is the Debye limiting law, while
the second term gives a quantum correction. According to
the Bohr—van-Leeuwen theorem, the classical Debye law is
not influenced by a magnetic field.

First we calculate the Hartree-Fock term, which can be

written in space time representation as

1

= > fld)\T fdldzv 12
BPHE= 5020 | N T |, (12

X GI(12)GJ(21") 8ap. (16)

The free-particle Green’s functioBg(12) must now be re-
placed by Eq.(14). In the resulting expression all integrals

D. Second-order exchange term

The exchange term of ordef is given by

1 1d\
Bo=— 503 foTTr o f d1d2d3d4V,(13)

X Vap(24)G7(12)G(23)G7(34)G(41) 8, .
(22)

can be computed exactly. The detailed calculation is given in

Appendix A. Defining &é,,=e,e,/(4megkTh5p) and A4y

=h/\2m,4 kT, m,, being the effective mass, we obtain the

result
T
IBpHFZEa: E Zaz)\gagaafl(xa)r (17)
where we have introduced
) 1 tanh(x,)
tank(x,) cosh2x,) & ol X,
fl(xa):
Xa  cosh(x,) /1 tanh(x,)
X
: (18)

C. Montroll-Ward (MW) term

Next we investigate the direct term of ordet given by
the following expression:

1 1dA .
/BpMW:m% fOTTr(w,) f d1d2d3d4V;,(12)

X Vqap(34)GY(23)GI(32)GY (14)GY (41).
(19

Again, a detailed calculation may be found in Appendix B.
Retaining only contributions of orde? we obtain the result

K3 w2 T
BPuW =157~ 2 7 ZaZMavtabl2(Xa Xp), (20

The result can be written in the fortdppendix Q

mn(2)

BPes=—2 —— Zi\afalaxa), (29

wheref(x,) is given by an integral representatigf4) and
can only be evaluated numerically. Therefore we propose the
following fit expression forf 3(x,):

qarctanhy/1— —ta?(t(xja)
tanh(cx,) '
Vi o

a

cosh{2x,) / tanh(cx,)
cost(x,) | (CXa)

fa(Xa) =

(24)

with the fitting parameters=0.8349 andd=0.9169.
Finally, we may sum up all contributions up to the order

7264, Collecting the obtained resulfs7), (20), and(23), the
scattering states contribution to the pressure in this approxi-
mation may be written as

3

K ~ o~
P 1o+ 2 Za2aBE (25
where we have defineB3:" by
T 3/2
B:%ME 5ab§ ?\ibiabfl(xa) - Tkit@ﬁbfz(xa Xp)
732
— Sap——IN(2)N3, &2, Fa(X,) | (26)
4 abSab'3\Ma
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FIG. 1. The pressure for various magnetic-field strengths at the demsity??® m™2 is plotted. For comparison, the pressure without
nonideality effects, i.ex=0 andB32"<0, is shown.

The influence of these states on the thermodynamics will . p? e? 5
be studied in Secs. V and VI. Finally, we note that this equa- Hi=sm  am (BXr)
tion gives in the limitx,—0 the exact zero magnetic-field e el
results(see[9)). 1 1\e e?
— e | —R. X —
Tz P (@9
IV. BOUND STATE CONTRIBUTION
e 2 2
. . " m\ho, K; K7 e
According to Eq.(3) we have for the bound state contri- Ho=|1+— + >+ -——+—(KXB)-r. (30
bution m/ 2 2M 2M M

In this approach the spectrum is characterized by the Landau
BplUN 7z 7. P, > e FEm, (270  quantum numben of the electron, the magnetic quantum
m numberm, the number of nodes of the z wave function,
and the pseudomomentukh. In casey>1, we can restrict
whereE,, are the eigenvalues 6f5;*. In Eq.(27), allterms ~ ourselves tm=0. The energy eigenvalues read[a$
up to the ordere* with respect to the interaction parameter ) )

must be omitted. In order to calculamS"", the precise _ eMe z L
. S ; Eomy =E,tMioi—+ + . 31
knowledge of the binding energies is essential. Therefore, we oMK, = =m Yo T 2M T 2M, (31)

briefly review the energy spectrum of the bound states and

specify the approximations used in this paper. In contrast t&m, iS the energy of a bound electron moving in a fixed

the field-free hydrogen atom, there is no exact solution focCoulomb potential. Forr=0 the states are tightly bound

the nonrelativistic hydrogen atom at abritrary magnetic-fielgwith binding energies approximated by

strength. We focus on the astrophysical interesting strong

field regime y>1. Here we essentially follow the work of Mei

Lai and Salpetef3]. Emo= _0'32m_e In
The two-body problem has been investigated in the

pseudomomentum approat_ﬁB—S]. The pseudor_nomentum while for =1 the states are hydrogenlike and the eigenval-

K=Z,(pa—eAateBXry) isa constant of.motlon. The(e— ues are well approximated by

fore one can construct a wave function with a well-defined

value ofK by

2
Y Mg
Tl m—gl) Ry, (32

Em=——5— RY, »=1234... (33)
PR =expli[K+(1/2Bxr]-Ri (1), (28) v Me

for the odd statesi.e., v=2v,—1) and for the even states
+m,) and the relative coordinates=r,—r;. Then the (ie., »=2y,). The second term in E31) describes a Lan-
o . s a - dau excitation of the proton, which is coupled to the electron
Hamiltonian of the Schrdinger equationH¢(r)=(H:  quantum numbem due to the conservation of total pseudo-
+H2) (1) =Enmwk k, ¢(r) can be written in the formiset-  momentum. The atom can freely move along the magnetic-
ting A=1/2(BXr) andM =m.+m;] field direction contributing the ternkZ/2M to the energy.

with the center-of-mass coordinat&s=(m;jr,+m,r,)/(my
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Contrary to that, the transverse motion is coupled to the in- Given the energy eigenvalues we can define a convergent
ternal motion by the termefM)(K XB)-r. For magnetic- expression for the atomic partition function. The operé&ter
field strengths considered here, energy corrections due to th@@n be taken into account by subtracting the lowest-order
term can be computed by pertubation expansion with respe@ontributions with respect to the interaction parameter. As in

to the eigenstates ofi;. Lai and Salpeter proposed an 'It_hek;ero r??gn?tlc ft|_eld cagé], one can define a Planck-
effective-masdV | approximation of the transverse moving arkin partition function

atom with og(T)=[exp(— BEng) —1]
Mo=M[ 1+t— |, t~28 (34 + 3 2exp~ BEp,)~ 1+ BEy,]. (39
0.32_-In(y) e

Here, the factor 2 has its origin in the near-degeneracy of the

which we will use for simplification for alim states. This hydrogenlike eigenstates. One can simplify the results by

energy correction is only valid for small pseudomomentum'megratmg over the pseudomomentiy
K,<K,., where K . is defined by #%K?/(2M) BK2  BK2 M

. . — 321
~[0.32(M/mg)In()/(ty)]Ry but serves as a fair approxima- j dKdK.exp — 5y oy | = (27MKkD ™ 4=
tion for magnetic-field strengthB<2.35x10° T. We note +

, D2 : (36)

that due to the coupling of the intrinsic magnetic moment of _ . _
the proton with the magnetic field, an additional factor of Now we can rewrite Eq(27). By using the eigenvalues
(1+e 2%) arises in the bound state partition function. OnEom.k «, [EQ- (3D)] and by introducing the modified fugaci-
the other hand, at magnetic fielgs>1 and temperatures  tiesz,; according to Eq(4), we arrive at the following ex-
~10°-1C° K, spin excitations of the electrons can be ne-pression for the bound state contribution to the second virial
glected. coefficient

M,

(1+e—2Xi)m2:0 e 2™ = gp(T). (37)

tanh(x.) tanh(x;)
X M

bound_7, 3, pbound_7, 3 3/2y 3
Bp =ZeZiBei = 2o 2 NG X
i

int

M, andog(T) are given by Eq(34) and Eq.(35), and the energy eigenvalugs,, by Eqgs.(32) and(33), respectively.

V. EQUATION OF STATE
Now we can sum up all contributions we have considered. According to(Efs(20), (23), (37), and expanding the ideal
contribution in terms of the modified fugacities up to the ofdléy the pressure reads as follows:

3 32 312
~ K - 7% tanh(x,) cosh2x,) T T
ﬁng Zyt+ E"'% Zazb( - 5ab)\ng 2 . + 5ab5)\gb§abf1(xa)_ T)\gbfgbfZ(XaaXb)

Xa  cosh(x,)

3/2
- 5abTIn(2))\§b§§bf3(xa)) +2,2;Bg0"™. (39)

The chemical potential in Eq38) can be eliminated by us- states contribution at high temperatures while at low tem-

ing the relation peratures the bound state term is dominant. Independent of
the nonideality of the system, we may also characterize the

~ d(Bp) pressure by the magnetic-field strength. Fer6x10° K,
Ne,i= Ze,i 02| (39) the pressure decreases with increasing magnetic-field

strength, while forT>6x10° K, the pressure increases as

to obtain the equation of state for a magnetized plasma. Thihe magnetic field increases. This can be explained by the

procedure has been carried out numerically and the resul@omination of the lowering of the ground-state energy with

are given in Fig. 1. increasing magnetic-field strength at low temperatures, while
Equations(38) and (39) describe the ionization equilib- at high temperatures the decrease of the phase space volume

rium of a weakly coupled hydrogen plasma in strong mag-dominates.

netic fields in an implicit form. The effect of the nonideality  In order to give a more explicit representation of the ion-

(i.e., of the scattering states contributiasf the plasma is to ization equilibrium, we will derive a generalized Saha equa-

reduce the pressure. This contribution dominates the bountibn in the next section.
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I. SAHA EQUATION Solving this equation by iteration we find

In previous treatments of this problef,12,13, the in- B 1 Be?x*
teraction between the charged particles has been neglected. InZt=In n}— = ———— —2n}(BMe+ B['®9),
But at high densities considered here, interactions between 2 Ameg
the particles play an important role. Our method is based on 2t
the chemical picture in which bound states are considered as In z *—Inn’— } pe _2 (Bfree+ Bfre (44)
composite particles, which must be treated on the same foot- 2 4T
ing as elementary particles. By inspection of the fugacity
expansion(38), we reinterpret the term containing the parti- InZi=Inn,

tion functionog(T) as the fugacityzy of the neutral atoms,
where nowx*2=(n}+n’)Be?/ e,=2n:Be’ €. By insert-
ing the fugacities according to E@44) into Eq. (40), the

Defining the fugacities of the free composite particles in thefollowmg Saha equation is obtained:

75 =2;z,B2"™ (40)

chemical picture b3ze ze, =7, the pressure reads as fol- n* Bei*
lows: 0 _BbOUﬂCb _ -2n Z Bfree (45)
nin’ 4meg
x| Tx K_ ¥ xnyfree
Bp=zetzi+ 127 +% Z2ZBa 75, (41) whereB®¢is to be taken from Eq$26) and(42). It is useful
to extend the range of validity of E¢45) for large¢,, by a
with Blfee=gseatty. gideal gng gidedl js given by kind of Padeapproximation. Noting that
. 732 tanh(x,) cosh2x,) Be’k* ,8e2 *
BldeaI:_ 37 a a ) 42 _ —-2n Bfree 1-—k*a
a T4 X, cosR(xy) 42 4meg E A ( )
The particle densities of the new species are given by _ Bek* 1 46
© 4me (1+«'a)
5 2B L SR 0B (Trea)
R gy 0 % iz where a may be interpreted as an effective radius of the
(43 charged particles and is defined by
|
47750 w32 w2 tanh(x,) cosh2x,)
o2 | 2 T Nl oXa o) o 2N () = Bab Nanf 1060) + Barh 5~ % cosfiny
a
NE
~To2 Ml falXa Xe) +IN(2)fs(xa)], (47)
|
we find the modified Saha equation a rough approximation. The plasma can no longer be re-

garded as a weakly coupled system, rather it must be treated
. - as a strongly coupled system.
No _ ghoundyy | Bek 49) Additionally, we may characterize the dependence of the
Amey(1+x*a)) ionization degree on the magnetic-field strength. With in-
creasing magnetic-field strength the ionization degree de-
creases at temperaturds<6x10° K, while for tempera-
Equation(48) differs from the Saha equation given[B] by  tures T>6Xx10° K the ionization degree increases. The
an additional exponential factor, which may be interpreted agxplanation of this effect was given in Sec. V.
the lowering of the ionization energy. In Fig. 2 the degree of
ionization «=n;/n for a dense hydrogen plasma at various
magnetic-field strengths is plotted and compared with the
results of the ideal Saha equati@]. We find an increase of In this paper we constructed a theory describing a hydro-
the ionization degree in comparison with the ideal Sahayen plasma in a constant uniform magnetic field. Starting
equation[3] due to the nonideality effects. For densities of from a fugacity expansion, we derived a general expression
about 16°— 10°® m® the deviation from the ideal Saha equa- for the second virial coefficient as a perturbation expansion
tion may be as large as 10-15&ee Fig. 2 At even higher  with respect to the interaction parame#érand we explicitly
densities, i.e.n>10* m~3, this result may only be used as calculated the lowest-order contributions for the scattering

VII. CONCLUSION
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FIG. 2. Degree of ionization at a density @& 2g cnmi 3(n=1x10* m~3) for various magnetic field strength. The ionization fraction
for k=0 is included(solid line).

part and considered bound state contributions at arbitrargnergy eigenvalues, i.e., better fitting formulas, and by cal-
order by using the approximate results for the binding energygulating even higher-order contributions to the scattering part
of Lai and Salpetel3]. The results were used to establish theof the second virial coefficient. Nevertheless, the influence of
equation of state. Finally, we have derived a generalizedhe nonideality effects on the ionization equilibrium as
Saha equation and we have shown that at high densities amsthown in this paper remains approximately the same.
at temperatures typical for the surface of neutron stars, non-
:glgtail(ljl;y effects can significantly increase the degree of ion- ACKNOWLEDGMENTS
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APPENDIX A: HARTREE-FOCK TERM

By using the representation of the Green’s function in terms of the spectral fufEtipfil5)] we obtain for the Hartree-
Fock (HF) term

1 dp, dp, el
Ve T [ [ dwstaton [ qwataton [ ar, [ ar
(V)ur 2; (o) 2m3) (2m)3 €o||01—|02|2 wifo(wy) wafo(wy) 1 1

xeletTigl*2T2A7(py, T1)AZ (P2, To).- (A1)

In order to fulfill the periodicity condition of the Green’s function, every time variable must be extended in the complex time
region. Therefore we associate with each time variable a small negative imaginaty-{#ft—i 5) and the corresponding
integration may be taken in the sense of an inverse Laplace transform. InsertittpEgthe Hartree-Fock pressure should

be written as

1 dp;  dp, e2 5+|°°dsl
V== f f J doryof f dof f

2 r{“@( )
cosit—(s;t+S
xfaerd—sze’”zsz 2~ - ex —p—izs ex _p_%zs
s—ix 27T w? ? 2m, ! 2m, 2
51 |cosh —

7 Sicost 7

p5 g
exg — patan}‘(—csz) . (A2)
M2 2
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This integral may be simplified in the nondegenerate chsiey) —ef*e A, where thew ands integrations are Laplace
transform and inverse, so that

d d e’ cosiw? 2 4n2 2 102 12 42 a
(V)= 2 f plf P2 a f(w;ﬂ)) eXF<—pl;mp2Z,8>eX PPy sz sztan%%ﬁ) .

(2m)3) (27)3 €o|p1—pal? COSH(%,B a Mywe
(A3)
The Gaussian momentum integrations are readily carried out, with the result
<, tanfx) 72 dp; € cosh2x,) p( piz) p( Pt Pl
Vige= D, z 22 — xg — — | exp — ———tanh(x,) | . (A4)
Vne g A X 2%2) (2m)3 €| py|? cosF(xy) 2 2%, A

The remaining integrals with respect pg may be evaluated exactly and the result can be expressed in terms of elementary
functions[14],

1 tanh(x,)
~ 5 eg tanh(x,) cosh2x,) arctan Xa
<V>HF:2 Z a)\ (AS)
2 “4meg  Xa  cosK(xy) [ tanh(xy)
1- x.
Finally, the charging integral may be carried out to obtain the Hartree-Fock contribution given (b7Eq.
APPENDIX B: MONTROLL-WARD TERM
According to Eq.(19), the Montroll-Ward(MW) term may be written as
i dqg dp
Vivw== Trw,f f dtVs,(q)V
(VImw 2% @ | w2y (277_)3[; ab(@) Van(Q)
o q o a. a’ aq. a’ gq.
><Ga>(p— §;t>Ga< p+ E,—t)Gb >(k— E,t)eb | k+ E,—t). (B1)

We are interested in the low-density region, ifg(w)<1. Thus we consider only contributions up to the orgferApplying
the same arguments as discussed in the preceding section leads to the equation

dq dp dk [-iB
j dtVap(a)Van(Q)

i
<V>MW:§% ZaZbTr(UvU’)f (277)3 (277-)3 (2’77)3 0

XAZ

p— g,t)Ag p+ g,—iﬂ—t)Ag’(k— g,t AL | k+ g,—iﬂ—t). (B2)

Again, A(k) may be replaced according to E45) and all Gaussian integrals may be evaluated with the result

_E EaEb
<V>MW_ 2% (277)3

€,6,) 2 1 1 1 5
— )\abJ dtf dog————5 S oxd —at(1-t)Jexd —qit(1—t)(Yatyp)], (B3)
0 q°+ k“\g q

where we have defineyia,b=)\ga’bbsinh(xa,bt)sinr[xa,b(l—t)]/[)\ibt(l—t)ZXaybsinh@a,b)]. Introducing spherical coordinates one
can integrate with respect tp The result is readily seen to be

BZ Ea~zb (eaeb

VImw=7 2 2m)? )fdt—f dz exp{ kKAt (1= O[Yat Yo = Z(YatYp— 1)1}

X (1=erf{ihap\t(1=O)[Yat Vo= 22 (Yat Yo~ D1} (B4)

Finally, thez integration yields
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(Vw= E Zazb(Eaeb) JodtK

2 exg K2\ 2t (1—t)(YatYp)]

erfl kX gpVt(1—t)(YatYp—1)]

b (2m)° KNapVt(1=1)(Yat+Yp—1)
4 o 2[RAapVtA-D(yaty,— DI (1 13 1
N = (2k+1)!! 2 1(5’_"_5’5’1_ YatYb (9

For a low-density plasma we may expand this expression in poweta @nd retain only contributions to first order. Using
the representation of the hypergeometric function

1

1_3 B 1 arcsinx)
325 =5 T T, o

the Montroll-Ward contribution to the second virial coefficient becomes

2F1

3 3/2
<V>MW:kT§_§ ——kTZzp\ap

arctanh/1—(y,+VYp)
VI=(Yatyn) |

After performing the charging procedure one may obtain the Montroll-Ward contribution to the prESqu(20)].

(B7)

e.e
: bf) (2 fdw (L 0)(YatYp)

APPENDIX C: SECOND-ORDER EXCHANGE TERM

This contribution is found to be

k >
(2 (277)3 (Zw)sV(Q)V(k)Ga

(V)ea= —2 Tr(,,f dtf

q
p+§+

2t
q

k K k-
><G§<(p—q 2—t>G">(p————t)G"<(p+g 5 t) (Cy

where the screened potential was replaced by the bare Coulomb poteridaPerforming the Laplace transform and inverse,
this equation may be rewritten as

i dk q
V)ea= zTrUf dtf V(Q)V(K)AZ| p+ 5+ =t
(V)er=752 () 23 277)3 (2m)? (MVKAZ| p+5+5
XA d k A7 q_k A7 a_k C2
p—5+5iip—t P55t pt5— 5Bt (€2
Carrying out all elementary integrals we obtain the result
3/2|n(2) :8
<V>e4 kTE Naa 4 . ) 2f3(xa) (C3
wheref(x,) is given by the integral representation
1 cosh2x arctan 1
foxa) = ot [ oty Woq . cH
mIN(2) cost(x,) Jo Jo T\t +4At(1-t) v, taXa/[tanhxat)+tank(xa(1-t))]+1
with
t,[ tanh(x,t) + tanh(X,(1— 1)) /X, + 4[ tanh x,t) tanh(x,(1— 1)) ]/x2 t,+1 5
Vag= 41— .

ty+4t(1-1t) ty+[tanh x,t) +tanh(x,(1—1))1/x,

The charging procedure yields an additional factor 1/2 and, finally, one obtaie$-torchange term the result given by Eq.
(23).
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