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Equation of state of a strongly magnetized hydrogen plasma

M. Steinberg, J. Ortner, and W. Ebeling
Institut für Physik, Humboldt Universita¨t zu Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany

~Received 10 April 1998!

The influence of a constant uniform magnetic field on the thermodynamic properties of a partially ionized
hydrogen plasma is studied. Using the Green’s-function method, various interaction contributions to the ther-
modynamic functions are calculated. The equation of state of a quantum magnetized plasma is presented within
the framework of a low-density expansion up to the ordere4n2 and, additionally, including ladder-type
contributions via the bound states in the case of strong magnetic fields (2.353105 T!B<2.353109 T). We
show that for high densities (n'1027230 m23) and temperaturesT'1052106 K typical for the surface of
neutron stars, nonideality effects such as, e.g., Debye screening must be taken into account.
@S1063-651X~98!15609-X#

PACS number~s!: 52.25.Kn, 05.70.Ce, 97.60.Jd
cl
r
ic
ve
n
e

n
th
nd

n
tiv
e

e

m
tr
th
-
ie
in
ir
ib
o
i

of

on

e

u
hi

s of

-

a
ne-
the
ri-
into

ss
ons
in
u-

re-
a

niza-
I.

ys-

ter-

in a

e

I. INTRODUCTION

The calculation of the equation of state~EOS! of a mul-
ticomponent quantum plasma consisting of charged parti
interacting via the Coloumb potential is of theoretical inte
est as well as of practical relevance, e.g., for astrophys
systems such as stars. The aim of this paper is to deri
low-density expansion for the EOS of a two-compone
plasma embedded in an external constant magnetic fi
This problem was recently tackled by Cornu@1# and Boose
and Perez@2#, who derived a formally exact virial expansio
of the EOS by using a formalism that is based on
Feynman-Kac path-integral representation of the gra
canonical potential.

In this paper we will employ the Green’s-functio
method. As the calculations are carried out for a nonrela
istic quantum system, we restrict ourselves to magnetic-fi
strengthsB,Brel , which is given byBrel5me

2c2/(e\)'4.4
3109 T. Further, we will use an expansion of the magn
tized plasma pressure in terms of the fugacityz5ebm to
obtain the EOS of a weakly coupled magnetized plas
Thus we can derive explicit expressions for various con
butions to the quantum second virial coefficient. Though
formalism is formally valid only for low densities, the ob
tained explicit expressions are appropriate even at suffic
high densities as the magnetic field increases the doma
classical behavior towards higher densities. The second v
coefficient contains both scattering and bound state contr
tions of two-particle states. Being interested in the therm
dynamic properties of quantum magnetized plasmas, the
fluence of the magnetic field on the energy eigenstates
two-particle state has to be taken into account.

Usually the magnetic field is measured by the dimensi
less parameterg5\vc /2R5B/B0 , where\vc is the elec-
tron cyclotron energy, B0'2.353105 T, and R
5e2/(8pe0aB)'13.605 eV is the ionization energy of th
field-free hydrogen atom. Wheneverg.1, i.e., the cyclotron
energy is larger than the typical Coulomb energy, the str
ture of the hydrogen atom is dramatically changed. T
problem has been approached by several authors@3–6#. Us-
ing the results of these authors, we study the influence
PRE 581063-651X/98/58~3!/3806~11!/$15.00
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bound and scattering states on thermodynamic propertie
magnetized plasmas.

Recently the problem of ionization equilibrium of hydro
gen atoms in superstrong magnetic fields (g@1) was con-
sidered by Lai and Salpeter@3#. They proposed an ideal Sah
equation of a hydrogen gas including bound states but
glecting screening effects and scattering contributions to
second virial coefficient. Using the EOS obtained in our de
vation, we construct a modified Saha equation that takes
account nonideality effects as well.

The paper is organized as follows. In Sec. II, we discu
the method that is used to calculate thermodynamic functi
and derive analytical results for the scattering contribution
Sec. III. An approximate result for the bound state contrib
tions is given in Sec. IV and the equation of state is p
sented in Sec. V. Finally, we use our results to derive
generalized Saha equation and compare the degree of io
tion with the results of the ideal Saha equation in Sec. V

II. FUGACITY EXPANSIONS OF THE THERMODYNAMIC
FUNCTIONS

We consider a two-component charge-symmetrical s
tem ofN spin half particles of charge (2e) and massme and
N spin half particles of chargee and massmi . In general, the
total pressure can be split into ideal contributions and in
action contributions

p5pid1pint . ~1!

The pressure and the particle density of an ideal plasma
homogeneous magnetic fieldB5(0,0,B0) are given by a sum
of Fermi integrals over all Landau levelsn,

pid5kT(
a

2xa

La
3 (

n50
8 f 1/2„ln~zn

a!…,

n5(
a

2xa

La
3 (

n50
8 f 21/2„ln~zn

a!… ~2!

„xa5\vc
a/(2kT) with vc

a5ueauB0 /ma , La5h/A2pmakT,
and zn

a5exp@b(m2n\vc
a)#…. The prime indicates the doubl

summation due to the spin degeneracy except for then50
level.
3806 © 1998 The American Physical Society
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The interaction part of the pressure for sufficiently stro
decaying potentials may be written in terms of a fugac
expansion

b~p2pid!5(
ab

z̃az̃bBab1(
abc

z̃az̃bz̃cBabc1•••, ~3!

where we have introduced the modified fugacities

z̃a5za

2

La
3

xa

tanh~xa!
. ~4!

In the limit of small densities we havez̃a→na . We focus on
the calculation of the second virial coefficientBab , which is
defined by

Bab5
1

2VS La
3

2

tanh~xa!

xa
D S Lb

3

2

tanh~xb!

xb
D

3Tr ~e2bĤab
l51

2e2bĤab
l50

!, ~5!

Ĥab
l is the Hamilton operator of the two-particle system w

the interaction potentialVab(r ),

Ĥab
l 5S ~pa2eaAa!2

2ma
1mB

aB0szD
1S ~pb2ebAb!2

2mb
1mB

bB0szD1lVab~r !,

sz521,11 ~6!

and Ĥab
l50 of the noninteracting system. The additive ter

mB
aB0sz describes the coupling between the intrinsic ma

netic moment@mB
a5ea\/(2ma)# of the charged particles an

the magnetic field. However, in the case of partic
interacting via the Coulomb potentialVab(r )5eaeb /
(4pe0ura2rbu) the second virial coefficient defined by Eq
~4! and ~6! is divergent. In order to obtain a convergent e
pression, one has to perform a screening procedure. Su
-

s

-
h a

technique is well established in the zero magnetic-field c
@7–9# and can be easily extended to the nonzero magne
field case. This program was also carried out by Cornu@1#
and Boose and Perez@2#, who used the Feynman-Kac for
malism to derive a virial expansion for a magnetized mu
component system. Using the methods as described in@7–9#,
the convergent second virial coefficient of a plasma may
split into a scattering and bound state contribution. In co
trast to the zero magnetic-field case, an exact calculatio
the convergent second virial coefficient in terms of scatter
phase shifts is very complicated. Therefore, we will give
perturbation expansion of the scattering part in terms of
interaction parametere2 up to the ordere4 and use an ap-
proximate expression for the bound state part, which is va
in the case of strong magnetic fields (g.100). We may
employ the Green’s-function method. The starting point
the observation that the equation of state is connected to
average interaction energy^lVab& by a charging process

p2pid52
1

VE
0

1dl

l
^Vab&l , ~7!

V is the volume of the system. Taking into account man
body effects, thermodynamic functions may be expressed
a screened potentialVab

s . By this method the divergencie
due to the long-range Coulomb force are removed. Then
pressure is given by the equation

b~p2pid!5
1

2V(
ab

E
0

1dl

l E d1d2

3@Vab~12l!Ga~11!Gb~22!

1Vab
s ~12l!Pab~1211121l!#. ~8!

Here the first term is the Hartree approximation given
terms of the free-particle Green’s functionGa(11) andPab
denotes the polarization function. For low-density system
is necessary to calculate bound state contributions to
thermodynamic functions. Therefore we apply the ladder
proximation forPab ,
~9!
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To avoid double counting we have introduced the opera
P3 , which subtracts contributions of the orderVab

s and
(Vab

s )2. We may dividepint into a bound state contributio
pint

bound and a scattering state contributionpint
scatt,

pint5pint
bound1pint

scatt. ~10!

In the case of a Coloumb potential, this division is not triv
as the atomic partition function is divergent due to the in
nite number of bound states at the continuum boundary. T
problem has been extensively discussed in the z
magnetic-field case@9#. One can solve this problem in
natural way by introducing a renormalized sum of bou
states,
ar

en

el
is
h

in

s

n
g

he
r

l
-
is
ro

pint
bound5 z̃ez̃i P3Bab

bound, ~11!

where at zero magnetic fieldBab
bound is given by the Planck-

Larkin partition function@10#. This division is somewhat ar
bitrary but guarantees the convergence of the bound s
partition function even at vanishing magnetic field. We me
tion that this division does not affect the results of the th
modynamic potentials.

III. SCATTERING STATE CONTRIBUTION

We consider all diagrams up to the ordere4 in the inter-
action parameter. A diagrammatic representation of the p
turbation expansion takes the form
~12!
nc-

oth
q.
These diagrams are the Hartree term, the Montroll-W
term, the Hartree-Fock term, and the exchangee4 term, re-
spectively. The solid lines represent the uncorrelated Gre
function for a charged particle in a magnetic field@11#.
Hence our calculations are valid at arbitrary magnetic-fi
strength. The divergence of the Montroll-Ward graph
avoided by introducing a screened potential line. T
screened interaction potentialVs is evaluated in the
random phase approximation Vs(q,v)5V(q)/@1
2V(q)PRPA(q,v)#. At low densitiesVs can be approxi-
mated by a statically screened potentialVs5e2/(e0@q2

1k2#) with k25(e2/e0)PRPA(0,0)5b(e2/e0)( z̃e1 z̃i). In
the following calculations all results are obtained by sett
the distribution functionf 0(v)5ebme2bv, i.e., in the non-
degenerate limitnl3tanh(x)/x!1. The Hartree term vanishe
due to the electroneutrality.

A. Green’s function for the magnetic-field problem

In this section we represent the uncorrelated Gree
function for a charged particle moving in a constant ma
netic field in a closed form. The Green’s function is t
solution of the equation of motion~using symmetric gauge
and setting\51):
d

’s

d

e

g

’s
-

S DR

2m
2

mvc
2

8
~X21Y2!1

vc

4
L̂z2mBBsz1 i

]

]TDG8~R,T!

5d~R!d~T!. ~13!

G8(r,r 8,T) can be expressed in terms of the correlation fu
tions by

G8~r,r 8,T!5u~T!G.8 ~r,r 8,T!1u~2T!G,8 ~r,r 8,T!.

The prime denotes the particular choice of the gauge. B
G.8 and G,8 satisfy the homogeneous counterpart of E
~13!. According to Horing@11#, for arbitrarily chosen gauge
they can be written as

G$:%~r,r 8,T!5E dv

2p H 2 i @12 f 0~v!#
i f 0~v! J

3exp~2 ivT!E
2`

`

dT8

3exp~ ivT8!A~r ,r 8,T8!, ~14!

with
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A~r ,r 8,T8!5C~r ,r 8!E dp

~2p!3
exp~ ip–R!

3expF2 i S mBBsz1
pz

2

2mDT8G 1

cosS vc

2
T8D

3expF2 i
px

21py
2

mvc
tanS vc

2
T8D G . ~15!

The gauge dependence of the Green’s function is explic
given in the factorC(r ,r 8). Noting thatC(r ,r 8) is only a
function of R5r2r 8 and that it obeys the relatio
C(r ,r 8)C(r 8,r )51, this factor can be left aside in the fo
lowing calculations.

B. Hartree-Fock „HF… term

First we calculate the Hartree-Fock term, which can
written in space time representation as

bpHF52
1

2V(
ab

E
0

1dl

l
Tr ~s!E

0
d1d2V~12!

3Ga
s~12!Gb

s~211!dab . ~16!

The free-particle Green’s functionGa
s(12) must now be re-

placed by Eq.~14!. In the resulting expression all integra
can be computed exactly. The detailed calculation is give
Appendix A. Defining jab5eaeb /(4pe0kTlab) and lab

5\/A2mabkT, mab being the effective mass, we obtain th
result

bpHF5(
a

p

2
z̃a

2laa
3 jaaf 1~xa!, ~17!

where we have introduced

f 1~xa!5
tanh~xa!

xa

cosh~2xa!

cosh2~xa!

arctanhA12
tanh~xa!

xa

A12
tanh~xa!

xa

.

~18!

C. Montroll-Ward „MW … term

Next we investigate the direct term of ordere4 given by
the following expression:

bpMW5
1

2V(
ab

E
0

1dl

l
Tr ~s,s8!E d1d2d3d4Vab

s ~12!

3Vab~34!Ga
s~23!Ga

s~32!Gb
s8~14!Gb

s8~41!.

~19!

Again, a detailed calculation may be found in Appendix
Retaining only contributions of orderz̃2 we obtain the result

bpMW5
k3

12p
2(

ab

p3/2

4
z̃az̃blab

3 jab
2 f 2~xa ,xb!, ~20!
ly

e

in

.

where f 2(xa ,xb) may be written as

f 2~xa ,xb!5S 1

2
1

4

pE0

1

dtAt~12t !

3~ya1yb!
arctanhA12~ya1yb!

A12~ya1yb!
D , ~21!

with

ya,b5laa,bb
2 sinh~xa,bt !sinh„xa,b~12t !…/@lab

2 t~12t !

32xa,bsinh~xa,b!#.

The first term in Eq.~20! is the Debye limiting law, while
the second term gives a quantum correction. According
the Bohr–van-Leeuwen theorem, the classical Debye law
not influenced by a magnetic field.

D. Second-order exchange term

The exchange term of ordere4 is given by

bpe452
1

2V(
ab

E
0

1dl

l
Tr ~s!E d1d2d3d4Vab~13!

3Vab~24!Gs~12!Gs~23!Gs~34!Gs~41!dab .

~22!

The result can be written in the form~Appendix C!

bpe452(
a

p3/2ln~2!

4
z̃ a

2laa
3 jaa

2 f 3~xa!, ~23!

wheref 3(xa) is given by an integral representation~C4! and
can only be evaluated numerically. Therefore we propose
following fit expression forf 3(xa):

f 3~xa!5
cosh~2xa!

cosh2~xa!
S tanh~cxa!

~cxa! D d arctanhA12
tanh~cxa!

~cxa!

A12
tanh~cxa!

~cxa!

,

~24!

with the fitting parametersc50.8349 andd50.9169.
Finally, we may sum up all contributions up to the ord

z̃ 2e4. Collecting the obtained results~17!, ~20!, and~23!, the
scattering states contribution to the pressure in this appr
mation may be written as

bpint
scatt5

k3

12p
1(

ab
z̃az̃aBab

scatt, ~25!

where we have definedBab
scatt by

Bab
scatt5S dab

p

2
lab

3 jabf 1~xa!2
p3/2

4
lab

3 jab
2 f 2~xa ,xb!

2dab

p3/2

4
ln~2!lab

3 jab
2 f 3~xa! D . ~26!
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FIG. 1. The pressure for various magnetic-field strengths at the densityn51029 m23 is plotted. For comparison, the pressure witho
nonideality effects, i.e.k50 andBab

scatt50, is shown.
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The influence of these states on the thermodynamics
be studied in Secs. V and VI. Finally, we note that this eq
tion gives in the limitxa→0 the exact zero magnetic-fiel
results~see@9#!.

IV. BOUND STATE CONTRIBUTION

According to Eq.~3! we have for the bound state contr
bution

bpint
bound5zezi P3(

m
e2bEm, ~27!

whereEm are the eigenvalues ofĤab
l51 . In Eq.~27!, all terms

up to the ordere4 with respect to the interaction paramet
must be omitted. In order to calculatepint

bound, the precise
knowledge of the binding energies is essential. Therefore
briefly review the energy spectrum of the bound states
specify the approximations used in this paper. In contras
the field-free hydrogen atom, there is no exact solution
the nonrelativistic hydrogen atom at abritrary magnetic-fi
strength. We focus on the astrophysical interesting str
field regimeg@1. Here we essentially follow the work o
Lai and Salpeter@3#.

The two-body problem has been investigated in
pseudomomentum approach@3–5#. The pseudomomentum
K5(a(pa2eaAa1eaB3r a) is a constant of motion. There
fore one can construct a wave function with a well-defin
value ofK by

c~R,r !5exp$ i @K1~1/2!B3r #•R%f~r !, ~28!

with the center-of-mass coordinatesR5(m1r 11m2r 2)/(m1
1m2) and the relative coordinatesr5r 22r 1. Then the
Hamiltonian of the Schro¨dinger equation Ĥf(r )5(Ĥ1

1Ĥ2)f(r )5EnmnKzK'
f(r ) can be written in the form@set-

ting A51/2(B3r ) andM5me1mi#
ill
-

e
d

to
r

d
g

e

d

Ĥ15
p2

2mei
1

e2

8mei
~B3r !2

1S 1

me
2

1

mi
D e

2
B•~r3p!2

e2

4pe0r
, ~29!

Ĥ25S 11
me

mi
D\vc

e

2
1

Kz
2

2M
1

K'
2

2M
1

e

M
~K3B!•r . ~30!

In this approach the spectrum is characterized by the Lan
quantum numbern of the electron, the magnetic quantu
numberm, the number of nodesn of the z wave function,
and the pseudomomentumK . In caseg@1, we can restrict
ourselves ton50. The energy eigenvalues read as@3#

E0mnKzK'
5Emn1m\vc

eme

mi
1

Kz
2

2M
1

K'
2

2M'

. ~31!

Emn is the energy of a bound electron moving in a fix
Coulomb potential. Forn50 the states are tightly boun
with binding energies approximated by

Em0520.32
mei

me
ln2S g

2m11

me
2

mei
2 D Ry, ~32!

while for n>1 the states are hydrogenlike and the eigenv
ues are well approximated by

Emn52
1

n1
2

mei

me
Ry, n151,2,3,4 . . . ~33!

for the odd states~i.e., n52n121) and for the even state
~i.e., n52n1). The second term in Eq.~31! describes a Lan-
dau excitation of the proton, which is coupled to the electr
quantum numberm due to the conservation of total pseud
momentum. The atom can freely move along the magne
field direction contributing the termKz

2/2M to the energy.
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Contrary to that, the transverse motion is coupled to the
ternal motion by the term (e/M )(K3B)•r . For magnetic-
field strengths considered here, energy corrections due to
term can be computed by pertubation expansion with res
to the eigenstates ofĤ1 . Lai and Salpeter proposed a
effective-massM' approximation of the transverse movin
atom with

M'5MS 11t
g

0.32
M

me
ln~g!D , t'2.8, ~34!

which we will use for simplification for allm states. This
energy correction is only valid for small pseudomoment
K'!K'c , where K'c is defined by \2K'c

2 /(2M )
'@0.32(M /me)ln(g)/(tg)#Ry but serves as a fair approxima
tion for magnetic-field strengthsB,2.353109 T. We note
that due to the coupling of the intrinsic magnetic moment
the proton with the magnetic field, an additional factor
(11e22xi) arises in the bound state partition function. O
the other hand, at magnetic fieldsg@1 and temperaturesT
'105–106 K, spin excitations of the electrons can be n
glected.
-

h
u

-
ag
ty

u

-

his
ct

f
f

-

Given the energy eigenvalues we can define a conver
expression for the atomic partition function. The operatorP3
can be taken into account by subtracting the lowest-or
contributions with respect to the interaction parameter. As
the zero magnetic field case@9#, one can define a Planck
Larkin partition function

sB~T!5@exp~2bEm0!21#

1 (
n51

2@exp~2bEmn!211bEmn#. ~35!

Here, the factor 2 has its origin in the near-degeneracy of
hydrogenlike eigenstates. One can simplify the results
integrating over the pseudomomentumK ,

E dKzdK'expS 2
bKz

2

2M
2

bK'
2

2M'
D 5~2pMkT!3/2

M'

M
.

~36!

Now we can rewrite Eq.~27!. By using the eigenvalues
E0mnKzK'

@Eq. ~31!# and by introducing the modified fugac

ties z̃e,i according to Eq.~4!, we arrive at the following ex-
pression for the bound state contribution to the second v
coefficient
l

bpint
bound5 z̃ez̃iBei

bound5 z̃ez̃i2p3/2lei
3 tanh~xe!

xe

tanh~xi !

xi
~11e22xi ! (

m50
e22mxi

M'

M
sB~T!. ~37!

M' andsB(T) are given by Eq.~34! and Eq.~35!, and the energy eigenvaluesEmn by Eqs.~32! and ~33!, respectively.

V. EQUATION OF STATE

Now we can sum up all contributions we have considered. According to Eqs.~17!, ~20!, ~23!, ~37!, and expanding the idea
contribution in terms of the modified fugacities up to the orderz̃ 2, the pressure reads as follows:

bp5(
a

z̃a1
k3

12p
1(

ab
z̃az̃bS 2dablab

3 p3/2

4

tanh~xa!

xa

cosh~2xa!

cosh2~xa!
1dab

p

2
lab

3 jabf 1~xa!2
p3/2

4
lab

3 jab
2 f 2~xa ,xb!

2dab

p3/2

4
ln~2!lab

3 jab
2 f 3~xa!D 1 z̃ez̃iBei

bound. ~38!
m-
t of
the

field
s
the
ith
hile
lume

n-
a-
The chemical potential in Eq.~38! can be eliminated by us
ing the relation

ne,i5 z̃e,i

]~bp!

] z̃e,i

~39!

to obtain the equation of state for a magnetized plasma. T
procedure has been carried out numerically and the res
are given in Fig. 1.

Equations~38! and ~39! describe the ionization equilib
rium of a weakly coupled hydrogen plasma in strong m
netic fields in an implicit form. The effect of the nonideali
~i.e., of the scattering states contribution! of the plasma is to
reduce the pressure. This contribution dominates the bo
is
lts

-

nd

states contribution at high temperatures while at low te
peratures the bound state term is dominant. Independen
the nonideality of the system, we may also characterize
pressure by the magnetic-field strength. ForT,63105 K,
the pressure decreases with increasing magnetic-
strength, while forT.63105 K, the pressure increases a
the magnetic field increases. This can be explained by
domination of the lowering of the ground-state energy w
increasing magnetic-field strength at low temperatures, w
at high temperatures the decrease of the phase space vo
dominates.

In order to give a more explicit representation of the io
ization equilibrium, we will derive a generalized Saha equ
tion in the next section.
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I. SAHA EQUATION

In previous treatments of this problem@3,12,13#, the in-
teraction between the charged particles has been negle
But at high densities considered here, interactions betw
the particles play an important role. Our method is based
the chemical picture in which bound states are considere
composite particles, which must be treated on the same f
ing as elementary particles. By inspection of the fugac
expansion~38!, we reinterpret the term containing the par
tion functionsB(T) as the fugacityz0

! of the neutral atoms

z̃0
!5 z̃i z̃eBei

bound. ~40!

Defining the fugacities of the free composite particles in
chemical picture byz̃e

!5 z̃e ,z̃i
!5 z̃i the pressure reads as fo

lows:

bp5 z̃e
!1 z̃i

!1
k!3

12p
1(

ab
z̃a

!z̃b
!Bab

free1 z̃0
! , ~41!

with Bab
free5Bab

scatt1Bab
ideal andBab

ideal is given by

Bab
ideal52dablab

3 p3/2

4

tanh~xa!

xa

cosh~2xa!

cosh2~xa!
. ~42!

The particle densities of the new species are given by

ne
!5 z̃e

!
]~bp!

] z̃e
!

, ni
!5 z̃i

!
]~bp!

] z̃i
!

, n0
!5 z̃0

!
]~bp!

] z̃0
!

.

~43!
a
o

us
th
f
h
o
a-

s

ed.
en
n
as
t-

y

e

Solving this equation by iteration we find

ln z̃e
!5 ln ne

!2
1

2

be2k!

4pe0
22ne

!~Bee
free1Bei

free!,

ln z̃i
!5 ln ni

!2
1

2

be2k!

4pe0
22ni

!~Bii
free1Bei

free!, ~44!

ln z̃0
!5 ln n0

! ,

where nowk!25(ne
!1ni

!)be2/e052ne
!be2/e0 . By insert-

ing the fugacities according to Eq.~44! into Eq. ~40!, the
following Saha equation is obtained:

n0
!

ne
!ni

!
5Bei

boundexpS 2
be2k!

4pe0
22ne

!(
ab

Bab
freeD , ~45!

whereBab
free is to be taken from Eqs.~26! and~42!. It is useful

to extend the range of validity of Eq.~45! for largejab by a
kind of Pade´ approximation. Noting that

2
be2k!

4pe0
22ne

!(
ab

Bab
free52

be2k!

4pe0
~12k!a!

'2
be2k!

4pe0

1

~11k!a!
, ~46!

where a may be interpreted as an effective radius of t
charged particles and is defined by
a5
4pe0

2

b2e4 (ab
S p3/2

4
lab

3 jab
2 f 2~xa ,xb!1dab

p3/2

4
ln~2!lab

3 jab
2 f 3~xa!2dab

p

2
lab

3 jabf 1~xa!1dablab
3 p3/2

4

tanh~xa!

xa

cosh~2xa!

cosh2~xa!
D

'
Ap

16(
ab

lab@ f 2~xa ,xb!1 ln~2! f 3~xa!#, ~47!
re-
ated

the
in-
de-

e

ro-
ing
ion
ion

ing
we find the modified Saha equation

n0
!

ne
!ni

!
5Bei

boundexpS 2
be2k!

4pe0~11k!a!
D . ~48!

Equation~48! differs from the Saha equation given in@3# by
an additional exponential factor, which may be interpreted
the lowering of the ionization energy. In Fig. 2 the degree
ionizationa5ne

!/n for a dense hydrogen plasma at vario
magnetic-field strengths is plotted and compared with
results of the ideal Saha equation@3#. We find an increase o
the ionization degree in comparison with the ideal Sa
equation@3# due to the nonideality effects. For densities
about 102921030 m3 the deviation from the ideal Saha equ
tion may be as large as 10–15 %~see Fig. 2!. At even higher
densities, i.e.,n@1030 m23, this result may only be used a
s
f

e

a
f

a rough approximation. The plasma can no longer be
garded as a weakly coupled system, rather it must be tre
as a strongly coupled system.

Additionally, we may characterize the dependence of
ionization degree on the magnetic-field strength. With
creasing magnetic-field strength the ionization degree
creases at temperaturesT,63105 K, while for tempera-
tures T.63105 K the ionization degree increases. Th
explanation of this effect was given in Sec. V.

VII. CONCLUSION

In this paper we constructed a theory describing a hyd
gen plasma in a constant uniform magnetic field. Start
from a fugacity expansion, we derived a general express
for the second virial coefficient as a perturbation expans
with respect to the interaction parametere2 and we explicitly
calculated the lowest-order contributions for the scatter
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FIG. 2. Degree of ionization at a density ofr'2g cm23(n5131030 m23) for various magnetic field strength. The ionization fractio
for k50 is included~solid line!.
ra
rg
he
ze
a
o

on

re
ra

al-
art
of

as

ge-
part and considered bound state contributions at arbit
order by using the approximate results for the binding ene
of Lai and Salpeter@3#. The results were used to establish t
equation of state. Finally, we have derived a generali
Saha equation and we have shown that at high densities
at temperatures typical for the surface of neutron stars, n
ideality effects can significantly increase the degree of i
ization.

The accuracy of the absolute values of the conside
physical quantities can be improved by using more accu
ry
y

d
nd
n-
-

d
te

energy eigenvalues, i.e., better fitting formulas, and by c
culating even higher-order contributions to the scattering p
of the second virial coefficient. Nevertheless, the influence
the nonideality effects on the ionization equilibrium
shown in this paper remains approximately the same.
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APPENDIX A: HARTREE-FOCK TERM

By using the representation of the Green’s function in terms of the spectral function@Eq. ~15!# we obtain for the Hartree-
Fock ~HF! term

^V&HF5
1

2(a
Tr ~s!E dp1

~2p!3E dp2

~2p!3

ea
2

e0up12p2u2E dv1f 0~v1!E dv2f 0~v2!E dT1E dT1

3eiv1T1eiv2T2Aa
s~p1 ,T1!Aa

s~p2 ,T2!. ~A1!

In order to fulfill the periodicity condition of the Green’s function, every time variable must be extended in the comple
region. Therefore we associate with each time variable a small negative imaginary partt→t(12 id) and the corresponding
integration may be taken in the sense of an inverse Laplace transform. Inserting Eq.~15! , the Hartree-Fock pressure shou
be written as

^V&HF5
1

2(a
E dp1

~2p!3E dp2

~2p!3

ea
2

e0up12p2u2E dv1f 0~v1!E dv2f 0~v2!E
d2 i`

d1 i` ds1

2p i
ev1s1

3E
d2 i`

d1 i` ds2

2p i
ev2s2

2 coshS vc
a

2
~s11s2! D

coshS vc
a

2
s1D coshS vc

a

2
s2D expS 2

p1z
2

2ma
s1DexpS 2

p2z
2

2ma
s2D

3expF2
p1r

2

mavc
a
tanhS vc

a

2
s1D GexpF2

p2r
2

mavc
a
tanhS vc

a

2
s2D G . ~A2!
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This integral may be simplified in the nondegenerate case,f 0(v)→ebme2bv, where thev and s integrations are Laplace
transform and inverse, so that

^V&HF5(
a

za
2E dp1

~2p!3E dp2

~2p!3

ea
2

e0up12p2u2
cosh~vc

ab!

cosh2S vc
a

2
b D expS 2

p1z
2 1p2z

2

2ma
b DexpF2

p1x
2 1p1y

2 1p2x
2 1p2y

2

mavc
a

tanhS vc
a

2
b D G .

~A3!

The Gaussian momentum integrations are readily carried out, with the result

^V&HF5(
a

z̃ a
2laa

2 tanh~xa!

xa

p3/2

23/2E dp1

~2p!3

ea
2

e0up1u2

cosh~2xa!

cosh2~xa!
expS 2

p1z
2

2 DexpS 2
p1x

2 1p1y
2

2xa
tanh~xa! D . ~A4!

The remaining integrals with respect top1 may be evaluated exactly and the result can be expressed in terms of elem
functions@14#,

^V&HF5(
a

p

2
z̃ a

2laa
2

ea
2

4pe0

tanh~xa!

xa

cosh~2xa!

cosh2~xa!

arctanhA12
tanh~xa!

xa

A12
tanh~xa!

xa

. ~A5!

Finally, the charging integral may be carried out to obtain the Hartree-Fock contribution given in Eq.~17!.

APPENDIX B: MONTROLL-WARD TERM

According to Eq.~19!, the Montroll-Ward~MW! term may be written as

^V&MW5
i

2(ab
Tr ~s,s8!E dq

~2p!3E dp

~2p!3E dk

~2p!3
bE

0

2 ib

dtVab
s ~q!Vab~q!

3Ga
s.S p2

q

2
;t DGa

s,S p1
q

2
;2t DGb

s8.S k2
q

2
;t DGb

s8,S k1
q

2
;2t D . ~B1!

We are interested in the low-density region, i.e.,f 0(v),1. Thus we consider only contributions up to the orderz2. Applying
the same arguments as discussed in the preceding section leads to the equation

^V&MW5
i

2(ab
zazbTr ~s,s8!E dq

~2p!3E dp

~2p!3E dk

~2p!3E0

2 ib

dtVab
s ~q!Vab~q!

3Aa
s S p2

q

2
,t DAa

sS p1
q

2
,2 ib2t DAb

s8S k2
q

2
,t DAb

s8S k1
q

2
,2 ib2t D . ~B2!

Again, A(k) may be replaced according to Eq.~15! and all Gaussian integrals may be evaluated with the result

^V&MW5
b

2(
ab

z̃az̃b

~2p!3S eaeb

e0
D 2

labE
0

1

dtE dq
1

q21k2lab
2

1

q2
exp@2qz

2t~12t !#exp@2qr
2t~12t !~ya1yb!#, ~B3!

where we have definedya,b5laa,bb
2 sinh(xa,bt)sinh@xa,b(12t)#/@lab

2 t(12t)2xa,bsinh(xa,b)#. Introducing spherical coordinates on
can integrate with respect toq. The result is readily seen to be

^V&MW5
b

2(
ab

z̃az̃b

~2p!3S eaeb

e0
D 2E

0

1

dt
p2

k E
21

1

dz exp$k2lab
2 t~12t !@ya1yb2z2~ya1yb21!#%

3„12erf$klabAt~12t !@ya1yb2z2~ya1yb21!#%…. ~B4!

Finally, thez integration yields
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^V&MW5
b

2(
ab

z̃az̃b

~2p!3S eaeb

e0
D 2E

0

1

dt
p2

k F2 exp@k2lab
2 t~12t !~ya1yb!#

klabAt~12t !~ya1yb21!
erf@klabAt~12t !~ya1yb21!#

2
4

Ap
(
k50

`
2k@klabAt~12t !~ya1yb21!#2k11

~2k11!!! 2F1S 1

2
,2k2

1

2
;
3

2
,12

1

ya1yb
D G . ~B5!

For a low-density plasma we may expand this expression in powers ofkl and retain only contributions to first order. Usin
the representation of the hypergeometric function

2F1S 1

2
,2

1

2
;
3

2
,x2D5

1

2SA12x21
arcsin~x!

x D , ~B6!

the Montroll-Ward contribution to the second virial coefficient becomes

^V&MW5kT
k3

8p
2(

ab

p3/2

2
kTz̃az̃blabS eaebb

4pe0
D 2S 1

2
1

4

pE0

1

dtAt~12t !~ya1yb!
arctanhA12~ya1yb!

A12~ya1yb!
D . ~B7!

After performing the charging procedure one may obtain the Montroll-Ward contribution to the pressure@Eq. ~20!#.

APPENDIX C: SECOND-ORDER EXCHANGE TERM

This contribution is found to be

^V&e45
i

2(a
Tr ~s!E

0

2 ib

dtE dp

~2p!3E dq

~2p!3E dk

~2p!3
V~q!V~k!Ga

s.S p1
q

2
1

k

2
;t D

3Ga
s,S p2

q

2
1

k

2
;2t DGa

s.S p2
q

2
2

k

2
;t DGa

s,S p1
q

2
2

k

2
;2t D , ~C1!

where the screened potentialVs was replaced by the bare Coulomb potentialV. Performing the Laplace transform and invers
this equation may be rewritten as

^V&e45
i

2(a
za

2Tr ~s!E
0

2 ib

dtE dp

~2p!3E dq

~2p!3E dk

~2p!3
V~q!V~k!Aa

sS p1
q

2
1

k

2
;t D

3Aa
sS p2

q

2
1

k

2
;2 ib2t DAa

sS p2
q

2
2

k

2
;t DAa

sS p1
q

2
2

k

2
;2 ib2t D . ~C2!

Carrying out all elementary integrals we obtain the result

^V&e45kT(
a

p3/2ln~2!

2
laaS ea

2b

4pe0
D 2

z̃ a
2f 3~xa!, ~C3!

where f 3(xa) is given by the integral representation

f 3~xa!5
1

p ln~2!

cosh~2xa!

cosh2~xa!
E

0

1

dtE
0

`

dt1
1

At114t~12t !

arctanhAva

Ava

1

t1xa /@ tanh~xat !1tanh„xa~12t !…#11
, ~C4!

with

va512
t1@ tanh~xat !1tanh„xa~12t !…#/xa14@ tanh~xat !tanh„xa~12t !…#/xa

2

t114t~12t !

t111

t11@ tanh~xat !1tanh„xa~12t !…#/xa
. ~C5!

The charging procedure yields an additional factor 1/2 and, finally, one obtains fore4-exchange term the result given by E
~23!.
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